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In [II criteria for the stability of the solution X(t) E o of a system 
dx/dt = f(X, t, Y( t, a)), where f(0, t, y) E 0, and U( t. O) is a Markov 

random process were established. Here a study is made of the problem of 
stability of the trajectory of a Markov process with a different defini- 
tion of stability and under different assumptions relative to the pro- 
cess. Only continuous Barkov processes of the diffusion type are con- 
sidered for which the coefficients of diffusion and transport become 
zero when x = 0. A necessary and sufficient condition for the stability 
of such processes is found, which is analogous to the fundamental theorem 
of LiammW 8 second method. For the verification of this condition it is 
sufficient to know the coefficients of diffusion and transport within an 
arbitrarily stall neighborhood of the point x = 0. The relation between 
the stability of a system of ordinary equations, and the stability of 
stochastic systems obtained from the former by the addition of diffusion 
is also investigated in this work. It is shown, for example. that in the 
case when the number of equations in the system n > 2, a sufficiently 
large diffusion will reduce the stability: in the case that n < 2, the 
stability (the asymptotic one) will be preserved. 

1. Formulation of the problem. ‘Ihe object of study in this work 

will be a random Markov process which can be described [2, p.2471 by a 

stochastic differential equation in vector form 

;+=b(X(t,o), t) +0(x @,o), 4 < @,o) (1.1) 

(X (t, o) = {X, (t, o), . . ., L (ho),, b (2, t) = {b, (z, % . . . , bn@, t)>) 

where u(x, t) is an n x n matrix, (0) = Q is a set of elementary events, 
and i(t, o) is n-dimensional “white noise”. 
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In order that the equation (1.1) may have a solution X(t o) E 0, it 
is necessary that b(0, t) E 0, and ~(0, t) 9 ((0)). Besides, just as in 
the case when u(x, t) z ((011, it is necessary to impose conditions on 
the coefficients under which X(t, w) 5 0 will be the unique trajectory, 
with probability one, which passes through the point x = 0. 'lhe condi- 
tions are given below. 

A solution of the equation (1.1) is, as is known, the Markov random 
process in the n-dimensional Euclidean space E,, with continuous trajec- 
tories X(t, 01. In the notation of [3] this Markov process can be de- 
noted by 

Here Ps .(A) denotes the probability of the event A under the condi- 
tion that k(s, 01 = x. We shall omit the argument o in the sequel. 

Definition. A trajectory X(t) E 0 of the process X is said to be 
stable for t>t,, if for every E > 0, and s)rt* 

In other words, the trajectory X(t) E 0 is stable if the probability, 
that X(t) leaves an a-neighborhood of the point x ='O even once, can be 
made arbitrarily small if the position of the trajectory at the initial 
instant of time s is chosen near enough to x = 0. 

'Ihe following differential operator is related to the process X 

Here o+ is a matrix which is the transpose of u. 

For the establishment of the connection between the theorems given be- 
low and the theorems of Liapunov, it is well to keep in mind that the ex- 
pression Lu(t, x), for any twice continuously differentiable function 
uft, xl, can be considered as the mean value of the derivative of the 
function u(t, x) along the trajectory of the Markov process X which 
emerges from the point x at the instant of time t. 

From what has been said, it follows that in the case under consider- 
ation 

bi (t, 0) = 0, C&j (t, 0) ES 0 (1.3) 

In the sequel, unless stated otherwise, we shall study a homogeneous, 
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in time, process for which L(t, n) s L(x); hereby Ps,,(.) s P,(.). 

Let us introduce the notation 

It is necessary to make the statement of the problem more precise 

since the equation (1.1) will define a unique Markov process with con- 

tinuous trajectories only under the condition that the coefficients bi 

and u.. do not increase too fast as 

‘I 
M - co, and under the condition 

that t e quadratic form of the matrix II nij(s, ')I1 is not degenerate. 

‘Ihe following conditions are assumed to be satisfied in the sequel. 

1. All coefficients of the operator L are bounded and sufficiently 

smooth everywhere in En, including the point n = 0. 

2. For some continuous function m(x), which is positive when x # 0, 

and for all real hi the inequality 

i aijhih.j > m (X) i hi2 
i.j=l i-l 

is valid. 

From the condition 1 and (1.3) it follows that 

aij (5) = 0 (I X12), hi (5) = 0 (I x I) (z --, 0) 0.4) 

Under these hypotheses the equation (1.1) (or the operator L) defines 

a unique hlarkov process X’ ‘) in the region U, = { 1 XI > l/m} up to the 

instant T. when the boundary rm of this region is reached. 

In what follows, we shall make use of sOme concepts of the theory of 

Markov processes, such as the strong flarkov process, a part of a process, 

and others. For the definition of these concepts see [3]. 

Lemma 1. Suppose that the conditions 1 and 2 are satisfied. Ihen 

there exists a unique strong Markov process in E,, with continuous tra- 

jectories, which does not vanish, and the part of which in IJm coincides 

with X(“). 

Proof. Let X be some process satisfying the conditions of the lemma. 

Let us denote by TV the instant when the trajectory of this process 

reaches the point x = 0. We shall prove first that for x # 0 

p, 1%) < co) = 0 (1.5) 
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It is clear that for 1x1 > l/m 

As is known (e.g. [4] ), the function u,(t, x) = P,{T, < t) is the 

unique solution of the problem 

av 
- = L (5) 2’ at (1.7) 

satisfying the conditions Vm (1, z) jlxl=l/m = 19 u,(O, x) = 0. Let us now 

consider the function w(t, n) = (t + 1)~~; the number a will be chosen 

later. One can easily verify that 

(L- a w = - rVa + a [(CC + 2) PW4 i QjXiXj - 
t,j=l 

From (1.4) it follows that 

(L-L)w = -r-Q+ao(P)<O 

if a is sufficiently small. For such a choice of a, the function 

wffl (t, 2) = rn-=w (t, 5) - vm (2, x) 

satisfies, obviously, the conditions 

(L-_)wm < 07 Wm (0, x, > 0, Wm (89 2) Ilxl=r/m > 0 

From the principle of a maximum it follows that 

Therefore 

This, together with (1.6), implies (1.5). 

We note that we have proved simultaneously also the uniqueness of the 

bounded solution of Cauch, ‘s problem for the equation (1.7) in the 

region En x {t > 0). 

Indeed, if u1 and u2 are two different solutions, and if luil < M, 
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then in a manner analogous to the above procedure we obtain 

1 u1 - u2 I< (t + 1) 2MPm-a 

in the region U, x {t > O}, 

Taking the limit as-m - m, we obtain u1 z u2. The uniqueness of the 

solution of the mixed problem is established in an analogous way. 

Let us next prove that for any process satisfying the conditions of 

the lenrsa 

PO (X (1) Es 0) = 1 (1.8) 

i&t A be the set 1x1 = r<rO. We denote by ~a the instant of the 

first encounter of the trajectory X of the process with the boundary of 

the set A, and by -rs, as before, the instant of the first encounter of 

the trajectory of the process with the boundary T,, = {r = l/m}. Because 

the process X is a strong Markov process, we obtain 

P, { %nEEdu, JqGn)E~y}P,(~a<t - u) 
Er, U=O 

(W < rcl) (I*91 
The function v(t, x) = P~{T < t} satisfies the condition (1.6) in 

the region D({r < rO} x (t > O$), and the conditions ~(0, n) = 0 and 

dt, 41 = 1. (As was mentioned above, such a solution is unique.) 

After thczcOit is not difficult to prove, with the aid of the maximum 

principle, that 

if a is a sufficiently small positive number. Taking into account (1.91, 

we now obtain 

Taking the limit as m - 0~. we obtain PO{-ra: < t} = 0 when t > 0, r. >O. 

This implies (1.8). It is obvious that (1.5) and (1.8) imply the truth 
of the lemna. 

In what follows, we shall assume that the conditions of the learna are 

satisfied. 

2. Conditions for stability. Theorem 2.2. For the stability 
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of the trajectory ‘Y(t) E 0 of the process X it is necessary and suffi- 
cient that in some neighborhood of the point x = 0 there exists a con- 

tinuous non-negative function V(‘(x), which vanishes only at x = 0, and 

for which L V( x) < 0. 

Proof. Let the positive number E be given. We denote a solution of 

the problem by Um’s’(n) 

Lu = 0 when i/m<r<a 

u,@) (z) It=l,m = 0, UnP (2) Irmc = 1 

It is known [41, that 

z&n@) (5) = P* {sup 1 x (t) I> e (0 < t < zn)) 

Taking into account (1.5), we obtain easily 

From (2.1) it follows that the function u,(x) too satisfies the equa- 

tion LU = 0 (as the limit of a monotone sequence of “harmonic” functions). 

From this and from (1.2) there follows at once the necessity of the con- 

ditions of the theorem because one can take the function U,(X) itself for 

the function V. (From the stronger principle of a maxim it follows that 

u,(x) > 0 everywhere except at the point x = 0.) 

It is not difficult to establish the sufficiency of the conditions of 

the theorem. Indeed, from the maxims principle it follows that 

we 

to 
if 

Taking the limit in this inequality first as IR * a~, and then as x - 0, 

obtain (1.2). This proves the theorem. 

Note. For a process which is not homogeneous in time but GOrreSpondS 
the operator L ( t, 4, one can prove Lemma 1, and an analog to Theorem 1 
the condition (1.3) is satisfied uniformly in t. We note here only the 

following sufficient condition of stability for this case. 

Theorem 2.2. For the stability of the trajectory X(t) E 0 of the pro- 
cess X = {x(t)* PS J it i s sufficient that there exist a positive de- 
finite (in the se&e of [51) function V(s, L) for which aV/;s# + 
L(r, x)YBO. 
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Theorem 2.1 is well suited for establishing stability, but it is 
quite difficult to use it for determining instability in concrete pro- 
cesses. Therefore, we shall give another condition for instability which 
can be verified more easily. 

I’heore!n 2.3. A necessary condition for the trajectory X(t) E 0 of the 
process X being unstable is that in the neighborhood of n = 0 there exist 
a function W(x) such that W(x) -. w when x - 0, and .LI\<O at any point of 
this neighborhood except at the point x =-0. 

Proof. The function 

%n (z) = Px (sup 1 x (t) I < E (0 < t < %)I 

satisfies, for l/m < 1x1 < a, the equation LuI = 0 and the conditions 

Itm (5) Ir=i/m = 1, u, (5) IrrL, = 0 

From the maximum principle it follows that 

k?l(Q < w (4 
m$f,+nW (Y) 

Hence 

It follows, therefore, that P+{supIX(t) 1 > E (O< t < ml) = 1 when 
x # 0. ‘Ibis establishes the theorem. 

Note. From what has been proved it follows that under the conditions 
of the theorem the trajectory X(t) 5 0 is “uniformly unstable” in the 
sense that for every initial point z # 0 a particle will move away rrom 

a position of equilibrium with probability one. 

We shall consider still another definition of stability. 

Definition. A trajectory X( t) E 0 of the process X = {X( t) , Ps x1 is 
said to be asymptotically stable for t >/to if the condition (1.21 is 
satisfied, and if 

lim Ps,% {TE I X (t) I = 0) = 1 for sat0 
x-o 

One can show that for the case of a process that is homogeneous in 

time, and which satisfies the conditions of Section 1, stability of the 
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trajectory X(t) z 0 implies-asymptotic stability. 

For nonhomogeneous processes this is not true in general, but one can 

give sufficient conditions for asymptotic stability also in this case. 

3. Stability of a one-dimensional process. In this section it 

will be assumed that the process X is described by the operator 

where we restrict ourselves, in accordance with the assumptions of 

Section 1, to the case when 

a (z) = a,d + 0 (x2) (a&SO), b(x) =b,x+o(Ixl) 88 z+o 

(In this case it is not difficult to write out the necessary and 

sufficient conditions for stability. For this it is only necessary that 

the point x = 0 be au attractive unattainable point of the process when 

x > 0, and when x < 3 [6].) 

Theorem 3.2. The trajectory X(t) E 0 of the process X is 

(asymptotically) when b, < aO, it is unstable when b, ’ aO. 

Proof. 1) Suppose tnat b, < uO. We consider the function 

where y is some positive number less than 1 - bO/ao. 

Obvious1 y 

stable 

V(x) = 

LV = uox2y (r - 1) 1 x p-2 + b, 1 x 1 y 1 5 p + 0 (I x p) = 

=rlxIY l%tr-- 1) + &)I + 0 (1 x I’) < 0 

in a sufficiently small neighborhood of the point x = 0. Hence, the 

tion V(X) satisfies the conditions of Theorem 2.1. 

func- 

2) Suppose that b, > ae. 

- 1 1 1 t’ f’ 

One can verify that the function W(n) = 

n x sa is ies the conditions of Theorem 2.3, this proves the theorem. 

We shall.give some consequences of this theorem. Suppose e.g. the co- 

efficient of diffusion a(r) = 0(x2) (i.e. a,, = 0). 

‘Ihen 'Ibeorem 3.1 shows that the asymptotic stability based on the 

first approximation of the trajectory x(t) = 0 of the random process de- 

scribed by the equation 

a2 / dt = b (5) (3.4) 

will guarantee the stability of the random process X with the same 
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coefficient b(x) described by the equation 

ax I f-4 =b(X)fV,O (3.2) 

In case of instability of the linear approximation for the process 
(3.l),the trajectory x(t) e 0 for the process (3.2) will also be un- 
stable. It is not difficult to give examples which show that in case of 
neutrality of the first approximation (b, = 0) for the process (3. l), one 
can have either stability or instability for the process (3.2). 

It is interesting to note tilso that an unstable (even in the linear 
approximation) equilibrium of the process (3.1) will pass into a stable . 
one if one imposes the “randomness” 4 [a(z)] < provided a0 > b,. The ex- 
amples given in the next section show that this can happen, seemingly, 
only in the one-dimensional case. 

4. Examples of investigations of stability in multidimen- 
sional processes. 

1. Let the Markov process X correspond to the operator 

We shall assume that the system 

d*/dt = bi (2) (i=i,...,n) (4.1) 

is asymptotically stable in its linear approximation. Let us assume, 
furthermore, that 

aij (5) = 0 (I x I”> @d 0) (4.2) 

It is not difficult to show now that the process X is also stable (for 
the one-dimensional case this was done above). Indeed, it is known [7, 
p.621 that for the system (4.1) there exists a positive-definite quadratic 
form V(x) for which the principal part of the expression 

represents a negative-definite quadratic function U(x). Hence, in view 
of (4.2), we have 

for sufficiently small 

2. Let the operator 

LV = u (x) + 0 (1 x I”) < 0 

1 n] , This permits us to apply Theorem 2.1. 

L(x) (x - 0) have the form 
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where all the numbers bi < 0. It is then obvious that the system “without 

randomness” is stable (asymptotically) in its linear approximation. 

Let us consider the auxiliary function V = (xl2 + . . . + xn2)” (the 

number a will be chosen later). Obviously 

+ [ i atj%zj] (a - 2 + 2a) + 0 (15 1’)) 
i,j=l 

If n<Z, then it is clear that if we take a > 0 sufficiently small 

we can make sure that L,V < 0 in some neighborhood of the point x = 0 for 
arbitrary numbers a. . . If, however, n > 2, then it is not, difficult to 

choose the numbers i:. so that L,V < 0 for some a < 0. ?faking use now of 

Theorems 2.1 and 2.3:’ we obtain the following conclusion. 

In case n = 2, and bi < 0, the trajectory .U( t) z 0 is stable for the 

process which corresponds to the operator (4.3) for arbitrary values of 

the coefficients a. . . However, 

the a. . are sufficl&ly small, 

in case n > 2,. this process is stable if 

“f * 
and it is unstable if these coefficients 

are su ficiently large. 

3. Let us consider the system 

dxx 
- = x2 + 6 (Xl, X2) 61, =a 
dt dt= - x1 + Q VI* XJ) $9 

It is clear that the position of equilibrium of this system in the 

absence of random disturbances (0(x1, z2) E 0) is stable, but not asymp- 
totically. 

Let us introduce the notation 

It is clear that L,W = 0 if I!’ = - ln(nl* + xz2) and, hence W(n) satis- 

fies the conditions of Theorem 2.3 provided a(x) # 0 when x # 0. There- 
fore, the trajectory X(t) s 0 is unstable for this process. 

The example shows that a system “without randomness”, i.e. non-asymp- 

totically stable, can pass into an unstable system if one adds diffusion 
terms of arbitrarily high order of smallness when r - 0. 
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In conclusion, let us consider some problems. 

(a) The following cases may be of interest, when the operator L(X) de- 
generates not at individual points but on a manifold of dimensions less 
than n. This gives rise to the problem on the stability of the set of 
trajectories contained in this manifold. It is not difficult to see that 
the theorems of Secion 2 can be modified so that they will apply to this 
case. We note also that it is exactly such a case (under a different de- 
finition of stability, and under different assumptions) that was treated 
in the interesting work [ll, which stimulated the writing of the present 
note. 

(b) It was shown above that (4.2) and the asymptotic stability of the 
linear approximation to the systela (4.1). guarantee the stability of the 
process X. One can, probably, prove that (4.2) and the instability of the 
linear approximation of (4.1) imply the instability of the process X. 
(This has been proved for a particular case in Section 3). It seems that 
for the proof of this assertion it would be necessary to obtain an 
effective sufficiency condition for instability, which could be applied 
to a more general class of cases than Theorela 2.3. 

(c) It is clear from the examples presented that in many cases the 
solution of the problem on the stability of a process X corresponding to 
the operator 

L (2) = i 

7t 

ai j (4 
i, j=l 

&+x w+ 
1 3 i=l i 

can be reduced to the same problem for the process of the “first approxi- 
mation” X”. described by the operator 

where the a i j”( x) are quadratic, while the bio(x) are linear forms that 

are the first non-vanishing terms of the expansion of the coefficients 
aij(r) and b,(x) by Taylor’s formula in the neighborhood of the point 
x = 0. It would be of interest to obtain fairly general criteria of sta- 
bility of the process X”. 
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